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Universal photonic tunneling time
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We consider photonic tunneling through evanescent regions and obtain general analytic expressions for the
transit ~phase! time t ~in the opaque barrier limit! in order to study the recently proposed ‘‘universality’’
property according to whicht is given by the reciprocal of the photon frequency. We consider different
physical phenomena~corresponding to performed experiments! and show that such a property is only an
approximation. In particular, we find that the ‘‘correction’’ factor is a constant term for total internal reflection
and quarter-wave photonic band gap, while it is frequency dependent in the case of an undersized waveguide
and distributed Bragg reflector. The comparison of our predictions with the experimental results shows quite
good agreement with observations and reveals the range of applicability of the approximate ‘‘universality’’
property.
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I. INTRODUCTION

In recent times, some photonic experiments@1–6# dealing
with evanescent mode propagation have drawn attention
cause of their intriguing results. All such experiments ha
measured the time required for the light to travel throug
region in which only evanescent propagation occurs, acc
ing to classical Maxwell electrodynamics. If certain cond
tions are fulfilled~i.e., in the limit of opaque barriers!, the
transit times obtained are usuallyshorter than the corre-
sponding ones for real~not evanescent! propagation through
the same region. Due to the experimental setup, this has
correctly interpreted in terms of group velocities@7# greater
thanc inside the region considered. Although there has b
some confusion in the scientific community, leading also
several different definitions of the transit time@8#, these re-
sults are not at odds with Einstein causality since, accord
to Sommerfeld and Brillouin@9#, the front velocity rather
than the group velocity is relevant for this. Waves that
solutions of the Maxwell equations always travel in vacuu
with a front velocity equal toc while, in certain conditions,
their phase and group velocities can be different fromc @10#.
It is worthwhile to observe that the quoted experiments w
carried out in studying different phenomena~undersized
waveguide, photonic band gap, total internal reflection! and
exploring different frequency ranges~from the optical to the
microwave region!.

The interest in such experiments is driven by the fact t
evanescent mode propagation through a given region ca
viewed as a photonic tunneling effect through a ‘‘potentia
barrier in that region. This has been shown, for example
Ref. @11# using the formal analogy between the~classical!
Helmholtz wave equation and the~quantum mechanical!
Schrödinger equation~see also Ref.@12#!. In this respect, the
photonic experiments are very useful in studying the qu
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tion of tunneling times, since experiments involving charg
particles~e.g., electrons! are not yet sensitive enough to me
sure transit times due to some technical difficulties@13#.

From an experimental point of view, the transit timet for
a wave packet propagating through a given region is m
sured as the interval between the arrival times of the sig
envelope at the two ends of that region, whose distance a
is D. In general, if the wave packet has a group velocityvg ,
this means thatt5D/vg . Sincevg5dv/dk (k is the wave
vector,v the angular frequency!, then we can write@14#

t5
df

dv
, ~1!

where df5D dk is the phase difference acquired by th
packet in the region considered. The above argument wo
for matter particles in quantum mechanics also, on chang
the roles of angular frequency and wave vector into the c
responding ones of energy and momentum through
Planck–de Broglie relations.

However, difficulties arise when we deal with tunnelin
times, since inside a barrier region the wave vector~or the
momentum! is imaginary, and hence no group velocity ca
be defined. As a matter of fact, different definitions of t
tunneling time exist. While we refer the read to the quot
literature@8#, here we use the simple definition of phase tim
which coincides with Eq.~1!. In fact, althoughvg seems
meaningless in this case, nevertheless Eq.~1! is meaningful
for evanescent propagation also. The point of view adop
takes advantage of the fact that experimental results@1–6#
seem to confirm the definition of phase time for the tunnel
transit time.

Recently, Haibel and Nimtz@6# noted that, regardless o
the different phenomena studied, all experiments have m
sured photonic tunneling times that are approximately eq
to the reciprocal of the frequency of the radiation used in
given experiment. Such a ‘‘universal’’ behavior is quite r
markable in view of the fact that, although photonic barr
,
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SALVATORE ESPOSITO PHYSICAL REVIEW E64 026609
traversal takes place in all the quoted experiments, never
less the boundary conditions are peculiar to each experim

In the present paper we carefully study the proposed
versality starting from a common feature of tunneling ph
nomena and, in the following section, derive a general
pression for the transit~phase! time. Different experiments
implement different dispersion relations for the barrier
gion. We then analyze each particular experiment in S
III, IV, and V and compare theoretical predictions with e
perimental observations. Finally, in Sec. VI, we discuss
results and give conclusions.

Note that, unlike other possible analyses~see, for ex-
ample, the comparison with a photonic band gap experim
in @15#!, we deal with only tunneling times, which have be
directly observed, and not with velocities which, in th
present case, are derived from transit times.

II. PHASE TIME AND DISPERSION RELATION

In this paper we study one-dimensional~1D! problems or,
in general, phenomena in which evanescent propaga
takes place along one direction, sayz. Let us then consider a
particle or a wave packet moving along thez axis entering a
region @0,a# with a potential barrierV(z) or a refractive
index n(z), as depicted in Fig. 1. The energy/frequency
the incident particle/wave is below the maximum of the p
tential or cutoff frequency. For all experiments will consid
the barrier can be modeled as a square one, in whichV(z) or
n(z) is constant in regions I, II, III but different from on
region to another. We also assume thatV(z) or n(z) is equal
in I and III and take this value as the reference one.

The propagation of the particle/wave through the bar
is described by a scalar fieldc representing the Schro¨dinger
wave function in the particle case or some scalar compon
of the electric or magnetic field in the wave case.~The pre-
cise meaning ofc in the case of wave propagation depen
on the particular phenomenon we consider. However, the
of this paper is to show that a common background for
tunneling phenomena exists.! Given the formal analogy be
tween the Schro¨dinger equation and the Helmholtz equati
@11,12#, this function takes the following values in regions
II, III, respectively:

c I5eikz1Re2 ikz, ~2!

c II5Ae2xz1Bexz, ~3!

FIG. 1. A barrier potentialV(z) for a particle or a barrier refrac
tive indexn(z) for an electromagnetic wave.
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c III 5Teik(z2a), ~4!

wherek andk25 ix are the wave vectors (p5\k is the mo-
mentum! in regions I~or III ! and II, respectively. Note tha
we have suppressed the time dependent factoreivt. Obvi-
ously, the physical field is represented by a wave packet w
a given spectrum inv:

c~z,t !5E dvh~v!ei (kz2vt), ~5!

whereh(v) is the envelope function. Keeping this in min
we use, however, for the sake of simplicity, the simple e
pressions in Eqs.~2!, ~3!, and~4!. Furthermore, for the mo-
ment, we disregard the explicit expression fork and x in
terms of the angular frequencyv ~or the relation betweenp
and E5\v). As is well known, the coefficientsR, T, A,
and B can be calculated from the matching conditions
interfaces:

c I~0!5c II~0!, c II~a!5c III ~a!, ~6!

c I8~0!5c II8~0!, c II8~a!5c III8 ~a!, ~7!

where the prime denotes differentiation with respect toz.
Substituting Eqs.~2!, ~3!, and~4! into Eqs.~6! and~7! we are
then able to findR, T, A, andB and thus the explicit expres
sion for the functionc. Here we focus only on the transmis
sion coefficientT; its expression is as follows:

T5@12r 2e22xa#21~12r 2!e2xa ~8!

with

r 5
x1 ik

x2 ik
. ~9!

The interesting limit is that of opaque barriers, in whic
xa@1. All photonic tunneling experiments have main
dealt with this case, in which ‘‘superluminal’’ propagation
predicted@16#. Taking this limit in Eq.~8! we have

T.2F12 i
k22x2

2kx G21

e2xa. ~10!

The quantityf in Eq. ~1!, relevant for the tunneling time, is
just the phase ofT:

f.arctan
k22x2

2kx
. ~11!

The explicit evaluation oft in Eq. ~1! depends, clearly, on
the dispersion relationsk5k(v) andx5x(v). However, by
substituting Eq.~11! into Eq. ~1! we are able to write

t52F11S k

x D 2G21 d

dv

k

x
, ~12!

showing thatt depends only on the ratiok/x. We can also
obtain a particularly expressive relation by introducing t
quantities
9-2
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k1

v1
5k

dk

dv
,

k2

v2
52x

dx

dv
. ~13!

In fact, in this case we get

t5
2

xk F x2

k21x2

k1

v1
1

k2

k21x2

k2

v2
G . ~14!

Note that, whilek1 and k2 are the real or imaginary wav
vectors in regions I~or III ! and II, v1 and v2 represent the
‘‘real’’ or ‘‘imaginary’’ group velocities in the same regions
Obviously, an imaginary group velocity~which is the case
for v2) has no physical meaning, but we stress that in
physical expression for the timet in Eq. ~14! only the ratio
k2 /v2 enters, which is a well-defined real quantity.

Equations~12! and~14! are very general ones~holding in
the limit of opaque barriers!: they apply toall tunneling phe-
nomena. It is nevertheless clear that peculiarities of a gi
experiment enter intot only through the dispersion relation
k5k(v) andx5x(v) or, better,k(v)/x(v).

As an example of application of the general formula o
tained, we consider here the case of tunneling of nonrela
istic electrons with massm through a potential square barrie
of heightV0. ~In the next sections we then study in detail t
three types of experiment already performed.! The electron
energy isE5\v ~with E,V0) while the momenta involved
in the problem arep5\k and iq5\k25 i\x. In this case,
the dispersion relations read as follows:

k5A2mv

\
, ~15!

x5A2m~V02\v!

\2
, ~16!

and thus

k

x
5A \v

V02\v
. ~17!

By substituting into Eq.~12! we immediately find

t5
\

AE~V02E!
5

1

\

2m

xk
. ~18!

III. TOTAL INTERNAL REFLECTION

The first photonic tunneling phenomenon we conside
that of frustrated total internal reflection@17#. This is a two-
dimensional process, but tunneling proceeds only in one
rection. With reference to Fig. 2, a light beam impinges fro
a dielectric medium~typically a prism! with indexn1 onto a
slab with indexn2,n1. If the incident angle is greater tha
the critical valueuc5arcsinn2 /n1, most of the beam is re
flected while part of it tunnels through the slab and emer
in the second dielectric medium with indexn1. Note that
wave packets propagate along thex direction, while tunnel-
ing occurs in thez direction.
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The wave vectorsk1 and k2 in regions I ~or III ! and II
satisfy

k1
25kx

21k2, ~19!

k2
25kx

22x2, ~20!

where kx is the x component ofk1 or k2 and k,x are as
defined in the previous section. The dispersion relations
regions I~or III ! and II are, respectively,

k15
v

c
n1 , ~21!

k25
v

c
n2 . ~22!

These equations also define the introduced quantities

v15
c

n1
, ~23!

v25
c

n2
. ~24!

It is now very simple to obtain the tunneling time in th
opaque barrier limit for this process; in fact, by substituti
Eqs.~21!–~24! into Eq. ~14! we find

t5
1

v

2kx
2

xk
. ~25!

Furthermore, using the obvious relations

kx5k1sinu5
v

c
n1sinu, ~26!

k5k1cosu5
v

c
n1cosu, ~27!

FIG. 2. Frustrated total internal reflection in a double prism.
9-3
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SALVATORE ESPOSITO PHYSICAL REVIEW E64 026609
x5Ak1
2sin2u2k2

25
v

c
An1

2sin2u2n2
2, ~28!

we finally get

t5
1

n

n1sin2u

p cosuAn1
2sin2u2n2

2
. ~29!

This formula can be directly checked in experiments. Ho
ever, we first observe the interesting feature of this exp
sion, which does satisfy the property pointed out by Hai
and Nimtz@6#. In fact, the timet in Eq. ~29! is given, apart
from a numerical factor depending on the geometry and c
struction of the experiment considered, by the reciproca
the frequency of the radiation used. In a certain sense,
numerical factor can be regarded as a ‘‘correction’’ factor
the ‘‘universality’’ property of Haibel and Nimtz.

Several experiments measuring the tunneling time in
process considered have been performed@3#. In the experi-
ment carried out by Balcou and Dutriaux@3#, two fused silica
prisms with n151.403 and an air gap (n251) were used.
They employed a Gaussian laser beam of wavelen
3.39 mm with an incident angleu545.5°. Using these val
ues in Eq.~29! we predict a tunneling time of 36.8 fs, to b
compared with the experimental result of about 40 fs. As
can see, the agreement is good and the ‘‘correction’’ facto
Eq. ~29! is quite important for this to occur~compare with
the Haibel and Nimtz prediction of 11.3 fs!.

In the measurements by Mugnai, Ranfagni, and Ron
@3#, the microwave region is explored, with a signal who
frequency is in the range 9–10 GHz. They used two para
prisms (n151.49) with an air gap (n251), while the inci-
dence angle was about 60°. For this experiment we pred
tunneling time of 87.2 ps, while the experimental result
8767 ps.1

Finally, we consider the recent experiment performed
Haibel and Nimtz @6# with microwave radiation atn
58.45 GHz and two Perspex prisms (n151.605) separated
by an air gap (n251). For an incident angle of 45°, from Eq
~29! we predictt580.8 fs. The observed experimental r
sult is, instead, 117610 fs. In this case, the agreement is n
very good ~dropping the ‘‘correction’’ factor, Haibel and
Nimtz find better agreement!; probably this is due to the fac
that the condition of an opaque barrier is not complet
fulfilled.

IV. UNDERSIZED WAVEGUIDE

Let us now consider propagation through undersized r
angular waveguides as observed in@1#. In this case also
evanescent propagation proceeds along one direction~sayz)
and the results obtained in Sec. II may apply. With refere

1Note that the value of 134 ps used by Haibel and Nimtz refer
the gap filled with paraffin. In this case no tunneling effect
present. We observe that for this experiment also the ‘‘correcti
factor in Eq.~29! plays a crucial role for thetunnelingtimes.
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to Fig. 3, a signal propagating inside a ‘‘large’’ waveguide
a certain point goes through a ‘‘smaller’’ waveguide for
given distancea. As is well known@18#, signal propagation
inside a waveguide is allowed only for frequencies high
than a typical value~cutoff frequency! depending on the ge
ometry of the waveguide. In the considered setup, the
differently sized waveguides I~or III ! and II thus have dif-
ferent cutoff frequencies~the first onev1 is smaller than the
second onev2), and we consider the propagation of a sign
whose frequency~or range of frequencies! is larger thanv1
but smaller thanv2 : v1,v,v2. In such a case, in the
region 0,z,a only evanescent propagation is allowed a
thus the undersized waveguide acts as a barrier for the
tonic signal. With the same notation as in Sec. II, the disp
sion relations in the large and small waveguides are, res
tively,

ck5Av22v1
2, ~30!

cx5Av2
22v2, ~31!

so that

k

x
5Av22v1

2

v2
22v2

. ~32!

By substituting this expression into Eq.~12!, we immediately
find the tunneling time in the regime of an opaque barr
(xa@1):

t5
1

n

1

p
A n4

~n22n1
2!~n2

22n2!
. ~33!

In contrast to what happens for tunneling in total intern
reflection setups, the coefficient of the term 1/n is not con-
stant but itself depends on frequency. Thus, in the case
undersized waveguides, the assumed ‘‘universality’’ prope
of Haibel and Nimtz cannot apply in general; depending
the cutoff frequencies, it is only a partially approxima
property for frequencies far way from the cutoff values~i.e.,
when the term under the square root does not strongly
pend onn).

Let us now compare the prediction~33! with the experi-
mental results obtained in@1#. In the performed experimen
we have microwave radiation along waveguides whose
off frequencies aren156.56 GHz andn259.49 GHz, re-
spectively. The radiation frequencies are aroundn
58.7 GHz, so that tunneling phenomena occur in the und
sized waveguide. By substituting these values into Eq.~33!,

o

’’

FIG. 3. A waveguide with an undersized region.
9-4
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UNIVERSAL PHOTONIC TUNNELING TIME PHYSICAL REVIEW E64 026609
we predict a tunneling time of 128 ps, compared with t
observed time of about 130 ps.

It is evident that for an undersized waveguide setup a
the theory matches quite well with experiments. Note th
despite the rich frequency dependence in Eq.~33!, the Haibel
and Nimtz property also works quite well~although some
correction is needed!, since the central frequency value of th
radiation used in the experiment is far enough from the c
off values.

V. PHOTONIC BAND GAP

The last phenomenon we consider is that of light pro
gation through photonic band gap materials. The ideal se
is depicted in Fig. 4. Light impinges on a succession of t
plane-parallel films composed ofN two-layer unit cells of
thicknessesd1 ,d2 and constant, real refractive indicesn1 ,n2,
embedded in a medium of indexn0. It is known @19# that
such a multilayer dielectric mirror possesses a~one-
dimensional! ‘‘photonic band gap,’’ that is, a range of fre
quencies corresponding to purely imaginary values of
wave vector. In practice, it is the optical analog of crystalli
solids possessing band gaps. Increasing the number of
ods will result in an exponential increase of the reflectiv
and thus the opaque barrier condition can be fulfilled.
general, the study of electromagnetic properties of such
terials is very complicated, and the dispersion relation
need to evaluate the phase time in the proposed formalis
quite involved for physical situations. This study was p
formed analytically in@15# where the dispersion relatio
~and other useful quantities! was derived starting from the
complex transmission coefficient of the barrier considered
is then quite meaningless to get the tunneling time from
dispersion relation obtained from the transmission coe
cient, while it is easier to obtain the phase timet from Eq.
~1! directly, wheref is the phase of the complex transmi
sion coefficient.

A. Quarter-wave stack

We first consider the relevant case in which each laye
designed so that the optical path is exactly 1/4 of some
erence wavelengthl0 : n1d15n2d25l0/4. In such a case
l0 corresponds to the midgap frequencyv0 (l052pc/v0).
This condition is fulfilled in the experiments considered@2#.
Finally, we further assume normal incidence of the light
the photonic band gap material.

FIG. 4. An ideal photonic band gap device.
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From @15# we then obtain the following expression for th
transmission coefficient:

T5@~AC2B!1 iAD#21, ~34!

whereA,B,C,D are real quantities given by

A5
sinNb

sinb
, ~35!

B5
sin~N21!b

sinb
, ~36!

C5a cos
pv

v0
1b, ~37!

D5c sin
pv

v0
, ~38!

a5
12r 02

2

t02t21t12
, ~39!

b5
r 12

2 ~r 02
2 21!

t02t21t12
, ~40!

c5
2r 02r 122r 02

2 21

t02t21t12
, ~41!

r i j 5
ni2nj

ni1nj
, ~42!

t i j 5
2nj

ni1nj
, ~43!

sinb5
1

t12t21
A2r 12

2 S cos
pv

v0
21D1sin2

pv

v0
~44!

( i , j 51,2). The phasef of the transmission coefficient thu
satisfies

tanf5
AD

B2AC
. ~45!

By substituting into Eq.~1!, we finally get an analytical ex-
pression for the tunneling time of light with frequencyn
close to the midgap valuen0 for N layers:

t5
1

n0

1

2

c sinhNu

sinh~N21!u1~b2a!sinhNu
, ~46!

whereu is simply obtained from

sinhu5
1

2 S n2

n1
2

n1

n2
D . ~47!

Note that, although the tunneling behavior is quite differe
if the number of periodsN is an even or odd number~see, for
9-5
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SALVATORE ESPOSITO PHYSICAL REVIEW E64 026609
example,@20#!, the expression for the tunneling time given
Eq. ~46! @and also in Eq.~48!# is the same in both cases.

For future reference, we also report the appropriate
mula for N5k1(1/2) ~integerk) multilayer dielectric mir-
rors. In practice, this models the case of a stratified med
whose structure has the formn1n2n1n2•••n1n2n1 ~note,
however, that this is an approximation since, in general,d/2
is not equal toa). In such a case, Eq.~46! is just replaced by

t5
1

n0

1

2

c coshNu

cosh~N21!u1~b2a!coshNu
. ~48!

Let us observe that, similarly to total internal reflection,
midgap the timet in Eq. ~46! or ~48! is again given by the
reciprocal of the frequency times a constant ‘‘correctio
factor.

We now analyze experimental results@2# in the light of
our theoretical speculations. In the experiment performed
Steinberg, Kwiat, and Chiao, the authors used a quarter-w
multilayer dielectric mirror with a (HL)5H structure with a
total thickness ofd51.1 mm attached on one side of a su
strate and immersed in air. Here,H represents a titanium
oxide film with n152.22, whileL is a fused silica layer with
n251.41. Thus, we have approximatelyN551(1/2). As in-
cident light, they employed a wave packet centred at a wa
lengthl05702 nm, corresponding to the midgap frequen
n0 of about 427 THz. By substituting these numbers in o
formula ~48! we predict a tunneling timet52.66 fs, corre-
sponding to a delay timeDt with respect to nontunneling
photons propagating at the speed of light for the distanced of
21.01 fs. This has to be compared with the experimen
result of Dt521.4760.2 fs. However, we point out tha
our analytical prediction is affected by two major appro
mations. The first one is, as already remarked, that the
perimental sample is not really a 51(1/2) periodic structure.
A better approximation is achieved by using Eq.~46! with
N56 and subtracting the time required for traveling at t
speed of light the quarter-wave thicknessd25l0/4n2. In this
case we havet52.02 fs or a delay timeDt521.65 fs,
which is in better agreement with the experimental res
Furthermore, in our analysis@leading to Eq.~46! or Eq.~48!#
there is no room for considering an asymmetric struct
~like the substrate-air one! in which the photonic band ga
material is embedded. This cannot be taken into accoun
an analytical framework, but has to be studied using the
merical matrix transfer method, which would give quite go
agreement with observations@15#.

Finally, we consider the experiment carried out by Spi
mannet al. @2# on alternating quarter-wave layers of fus
silica L and titanium dioxideH having the structure o
(substrate)(HL)n(air) with N53,5,7,9,11. They used optica
pulses of frequency 375 THz corresponding to the midg
frequency of their photonic band gap material. Obviously,
increasingN we have a better realization of the opaque b
rier condition. From Eq.~46! with N511 @note, however,
that for N>5 the factor sinh(N21)u/sinhNu is almost con-
stant# we have a tunneling time of 2.98 fs to be compar
with the observed value of about 2.71 fs. We address the
that, apart from the presence of the asymmetric substrat
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structure, which introduces some approximation as discus
above, in the experiment considered the incidence of
light on the sample is not normal, the angle between the a
of the sample and the beam propagation direction be
'20°. In this case, the described computations are only
proximate ones and, again, the exact result can be obta
only through numerical implementation. Nevertheless, a
within the limits of our calculations, the agreement betwe
theory and experiment is quite good.

A final comment regards the predictions of the ‘‘unive
sality’’ property proposed by Haibel and Nimtz. Neglectin
the ‘‘correction’’ factor in Eq.~46! would yield the values of
Dt521.33 fs andt52.67 fs for the delay time in the
Steinberg, Kwiat, and Chiao experiment and the transit ti
for the Spielmannet al. experiment, respectively. In bot
cases, the agreement with the observed values seems b
than our approximate predictions, showing that the prese
of an asymmetric substrate-air structure~and the non-norma
incidence in the second experiment! pushes up the ‘‘correc-
tion’’ factor in Eq. ~46!.

B. Distributed Bragg reflector

We now relax the assumption of a quarter-wave sta
n1d15n2d25l0/4 but, for simplicity, we consider only the
case in which the photonic band gap structure is embed
into a material whose refractive indexn0 is equal to that of
one of the two layers of the periodic structure, that is,n0
5n2. We again assume normal incidence of the light on
photonic band gap material. In this case the transmiss
coefficientT and its phasef have the expressions as in Eq
~34! and ~45!, whereA, B are given by Eqs.~35!, ~36!, and
@15#:

C5a cospV1v2b cospV2v, ~49!

D52a sinpV1v1b sinpV2v, ~50!

V65
n1d16n2d2

c
, ~51!

sinb5
1

t12t21
AP1Q1R, ~52!

P5r 12
4 sin2pV2v, ~53!

Q52r 12
2 ~cospV1v cospV2v21!, ~54!

R5sin2pV1v. ~55!

By substituting into Eq.~1! we obtain the tunneling time
relative to anN-layer structure:

t5
1

n

X2Y

Z
, ~56!

X5F sin2b cosNb sinNb, ~57!

Y5G~cosb cosNb sinNb2N sinb!, ~58!
9-6
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TABLE I. Comparison between predicted and observed tunneling times for several experiments~FTIR,
UWG, and PBG stand for frustrated total internal reflection, undersized waveguide, and photonic ban
respectively!. texpt is the experimental result whilet th is our prediction from Eqs.~29!, ~33!, and~46! or ~56!.
For reference to the Haibel and Nimtz property, we also report the value 1/n.

Phenomenon Experiment 1/n t th texpt

FTIR Balcou and Dutriaux@3# 11.3 fs 36.8 fs ;40 fs
FTIR Mugnaiet al. @3# 100 ps 87.2 ps 8767 fs
FTIR Haibel and Nimtz@6# 120 ps 81 ps 117610 fs
UWG Enders and Nimtz@1# 115 ps 128 ps ;130 fs
PBG(l0/4) Steinberget al. @2# 2.34 fs 2.02 fs 2.2060.2 fs
PBG(l0/4) Spielmannet al. @2# 2.67 fs 2.98 fs ;2.71 fs
PBG Mojahediet al. @5# 103 ps 320 ps 318620 ps
b
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Z52 sinb~D2sin2Nb1sin2b cos2Nb!, ~59!

F5aV1v cospV1v2bV2v cospV2v, ~60!

G5a2V1v sin2pV1v1b2V2v sin2pV2v

22ab~V11V2!v sinpV1v sin2pV2v. ~61!

Note that, again, the formula above fort holds both for even
N and for oddN.

The expression obtained for the tunneling time can
directly tested by analyzing the experiment carried out
Mojahedi et al. @5#. In this experiment the authors used
~1D! photonic crystal composed of five polycarbonate she
with refractive indexn151.66 and thicknessd151.27 cm
separated by regions of airn251 with thickness d2
54.1 cm. The band gap was tuned to the main freque
component (n59.68 GHz) of the incident microwave puls
By measuring both the signal traveling through the photo
band gap structure and the one propagating in free space
authors found that the pulse undergoing tunneling has a
lay time Dt52440620 ps with respect to the other signa
By using Eq.~56! with the above numbers we predict a tu
neling time of 320 ps,2 corresponding to a delay time ofDt
52438 ps, which is in excellent agreement with the
ported experimental result.

We point out that, in this case, the simple 1/n law pro-
posed by Haibel and Nimtz does not work, since it wou
predict a tunneling timet5103 ps orDt52655 ps. This
can be easily explained by looking at Eq.~56!. In fact, we
immediately recognize that the ‘‘correction’’ factor in th
equation is strongly frequency dependent and, for the
quency of the light used in the experiment considered, i
considerably bigger than 1.

VI. CONCLUSIONS

In this paper we have scrutinized the recently propo
@6# ‘‘universality’’ property of the photonic tunneling time
according to which the barrier traversal time for photo

2Such a result was also obtained in@5# using a formalism de-
scribed in@4# that is different from the one proposed here.
02660
e
y

ts

y

c
the
e-

-

-
is

d

s

propagating through an evanescent region is approxima
given by the reciprocal of the photonic frequency, irresp
tive of the particular setup employed. To this end, the tran
time in the relevant region, defined here as in Eq.~1!, needs
to be computed for the different phenomena explored, an
Sec. II we have given general expressions for this time in
opaque barrier limit. The peculiarities of a given photon
setup enter into these expression only through the disper
relation relating the wave vector and the frequency. In m
detail, we have shown how knowledge of the ratio betwe
the wave vectors in the barrier region and outside it, a
function of the photon frequency, is sufficient to evaluate
transit timet in Eq. ~12!.

Several specific cases, corresponding to the differ
classes of experimentally investigated phenomena, were
considered. In particular, in Sec. III we studied light prop
gation in a setup in which the evanescent region is provi
by total internal reflection, while in Sec. IV propagatio
through undersized waveguides was considered; and, fin
in Sec. V the case of a photonic band gap was analyzed.
relevant results for the three mentioned phenomena are g
in Eqs. ~29!, ~33!, and ~46! or ~56!, respectively. As can
easily be seen from these expressions, the frequency de
dence of the tunneling time for the cases of total inter
reflection and quarter-wave photonic band gap is just as
dicted by the property outlined by Haibel and Nimtz@6#,
although we have derived a ‘‘correction’’ factor dependi
on the geometry and on the intrinsic properties of the sam
~this factor is not far from unity!. On the contrary, such a
factor is frequency dependent for undersized waveguides
distributed Bragg reflectors, revealing a richer dependenc
t on n than the simple 1/n one @see Eq.~33!#. We can then
conclude that the ‘‘universality’’ property of Haibel an
Nimtz is only an approximation, but it gives the right ord
of magnitude for the tunneling time. This conclusion hol
also for undersized waveguide propagation, provided that
photon frequency is far enough from the cutoff frequenci
We then calculated the tunneling times for the different e
isting experiments and compared the theoretical values w
the observed ones. Results are summarized in Table I, w
we also report the Haibel and Nimtz prediction 1/n. From
these we can see that, in general, the agreement of our
diction with the experimental values is satisfactory. A
9-7
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pointed out in the previous section, the calculations p
formed here for photonic band gap materials assume s
approximations in treating the complex sample, which
nevertheless required to obtain analytical expressions.
predictions suffer from this and, in the case in which t
setup is designed to satisfy the quarter-wave condi
n1d15n2d25l0/4, the simple 1/n rule fits better with ex-
periments, while, for general photonic band gap structu
the tunneling time displays a very complicated depende
on frequency. In this last case, as well as in all other n
tt
F.

K

y,

et

02660
r-
e

e
ur

n

s,
e
-

photonic band gap experiments, the ‘‘correction’’ factor i
troduced in this paper is quite relevant for the agreem
with observations to be good.
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